超自然的LED烛光蜡烛
首页 > 硬件电路 > 超自然的LED烛光蜡烛     2018-11-14

想一想当你好不容易跟女朋友共度烛光晚饭,却因为蜡烛点没了或者打翻着火了,那是一件多么坑爹的事啊!今天为你分享一款自己diy的超自然的烛光蜡烛。

超自然的LED烛光蜡烛

ATtiny 电子蜡烛,皮特•米尔斯开发这个伟大的蜡烛,正如我们图片所见到的一样,但怎么让这蜡烛的光芒像传统的蜡烛一样闪烁呢。

超自然的LED烛光蜡烛

皮特使用一个高亮的LED和一些摹拟的辅助软件,这样就使得ATtiny 电子蜡烛的烛光和传统蜡烛具有一样的闪烁的烛光,并且优于传统蜡烛,因为它不伴有明火的危险。

超自然的LED烛光蜡烛

ATtiny 电子蜡烛最难的部份就闪烁神态逼真,所以皮特做了一个蜡烛光检测电阻( LDR )和固定电阻作为一个分压器。这是作为ATTINY85 ADC之中的一个输入端,并离散时间间隔的进行采样。采样速率为100毫秒。然后将收集的8bit的电频值存储到EEPROM中,以便记录蜡烛的闪烁图谱,驱动将其链接的LED、PWM形成通路。在用三节干电池供电。最后您只需编程程序,然后通过开关进行节制。

超自然的LED烛光蜡烛

下面是ATtiny 电子蜡烛的电路图

超自然的LED烛光蜡烛

下面是程序的代码和写入EEPROM的数据

接下来看看我们的成果吧

来源网址
程序代码
view plainprint?
/*
Program Description: This program reads a light detecting resistor thru an internal ADC and stores the value, 
after scaling it, to eeprom.  This ADC value is sent to a PWM channel with attached led.  This is essentially a data logger
for light and replay by LED.  If, if you aim the LDR at a flickering candle during its recording phase, you have a flickering 
led candle.  

A circuit description and other details can be found at http://petemills.blogspot.com

Filename: ATTiny_Candle_v1.0.c
Author: Pete Mills

Int. RC Osc. 8 MHz; Start-up time PWRDWN/RESET: 6 CK/14 CK + 64 ms

*/ 
 
 
 
//********** Includes ********** 
 
#include       
#include     
#include  
 
 
 
 
//********** Definitions ********** 
 
// LED for flame simulation 
 
#define LED   PB0   
#define LED_PORT PORTB 
#define LED_DDR  DDRB 
 
 
 
// Light Detecting Resistor for recording a live flame 
 
#define LDR   PINB3  
#define LDR_PORT PINB 
#define LDR_DDR  DDRB 
 
 
 
// Tactile Switch Input 
 
#define SW1   PINB4 
#define SW1_PORT PINB 
#define SW1_DDR  DDRB 
 
 
#define ARRAY_SIZE 500  // size of the flicker array 
#define SAMPLE_RATE 100  // ms delay for collecting and reproducing the flicker 
 
 
 
//********** Function Prototypes ********** 
 
void setup(void); 
void toggle_led(void); 
void program_flicker(void); 
void led_alert(void); 
void eeprom_save_array(void); 
void eeprom_read_array(void); 
void scale_array(void); 
uint8_t get_adc(void); 
uint8_t scale( uint8_t input, uint8_t inp_low, uint8_t inp_hi, uint8_t outp_low, uint8_t outp_hi); 
uint8_t is_input_low(char port, char channel, uint8_t debounce_time, int input_block); 
 
 
 
 
//********** Global Variables ********** 
 
uint8_t flicker_array[ ARRAY_SIZE ] = { 0 }; 
uint8_t EEMEM ee_flicker_array[ ARRAY_SIZE ] = { 0 }; 
 
 
int main(void) 

 
uint16_t replay = 0; 
 
setup(); 
 
eeprom_read_array(); 
 
 
 
while(1) 
{  
  
   
   
   
  if( is_input_low( SW1_PORT, SW1, 25, 250 ) ) 
  { 
    
   // program the flicker 
   // after entering and upon completion, a predetermined flash pattern will occur as described in led_alert()   
   // aim the ldr at a flickering candle or any other light source ( like a laser ) you want to record during this time 
   // and upon completion the values are stored to eeprom.  They are played back immediately as well  
   // as being recalled from eeprom upon first start up 
    
   led_alert(); 
   program_flicker(); 
   scale_array(); 
   eeprom_save_array(); 
   led_alert(); 
  } 
   
   
   
  // replay the recorded flicker pattern  
   
  OCR0A = flicker_array[ replay ]; 
  ++replay; 
   
  if( replay >= ( ARRAY_SIZE - 13 ) ) // if the end of the stored array has been reached 
  {  
   replay = 0;          // start again from the beginning 
   //led_alert(); 
  } 
   
  _delay_ms( SAMPLE_RATE ); 
  _delay_ms( 3 );    // ADC Conversion time 
    


 
 
 
 
//********** Functions ********** 
 
void setup(void) 

 
 
 
//********* Port Config ********* 
 
LED_DDR |= ( 1 << LED);   // set PB0 to "1" for output  
LED_PORT &= ~( 1 << LED );   // turn the led off 
 
LDR_DDR &= ~( 1 << LDR );   // set LDR pin to 0 for input 
LDR_PORT |= ( 1 << LDR );   // write 1 to enable internal pullup 
 
SW1_DDR &= ~( 1 << SW1 );   // set sw1 pin to 0 for input 
SW1_PORT |= ( 1 << SW1 );   // write a 1 to sw1 to enable the internal pullup 
 
 
 
//********** PWM Config ********* 
  
TCCR0A |= ( ( 1 << COM0A1 ) | ( 1 << WGM01 ) | ( 1 << WGM00 ) ); // non inverting fast pwm 
TCCR0B |= ( 1 << CS00 ); // start the timer 
  
  
  
//********** ADC Config ********** 
  
ADMUX |= ( ( 1 << ADLAR ) | ( 1 << MUX1 ) | ( 1 << MUX0 ) );  // left adjust and select ADC3 
ADCSRA |= ( ( 1 << ADEN ) | ( 1 << ADPS2 ) | ( 1 << ADPS1 ) ); // ADC enable and clock divide 8MHz by 64 for 125khz sample rate 
DIDR0 |= ( 1 << ADC3D ); // disable digital input on analog input channel to conserve power 
 

 
 
 
 
void toggle_led() 

    LED_PORT ^= ( 1 << LED ); 

 
 
 
 
uint8_t is_input_low( char port, char channel, uint8_t debounce_time, int input_block ) 

 
/* 
This function is for debouncing a switch input 
Debounce time is a blocking interval to wait until the input is tested again. 
If the input tests low again, a delay equal to input_block is executed and the function returns ( 1 ) 
*/ 
         
if ( bit_is_clear( port, channel ) ) 

  _delay_ms( debounce_time ); 
    
   if ( bit_is_clear( port, channel ) )  
   { 
    _delay_ms( input_block ); 
    return 1; 
   } 
  

 
return 0; 

 
 
 
 
uint8_t get_adc() 

ADCSRA |= ( 1 << ADSC );   // start the ADC Conversion 
  
while( ADCSRA & ( 1 << ADSC ));  // wait for the conversion to be complete 
  
return ~ADCH; // return the inverted 8-bit left adjusted adc val 
 

 
 
 
 
void program_flicker() 
{  
// build the flicker array 
  
for( int i = 0; i < ARRAY_SIZE; i++ ) 

  flicker_array[ i ] = get_adc();   
  _delay_ms( SAMPLE_RATE ); 

 

 
 
 
 
void led_alert() 

// this is a function to create a visual alert that an event has occured within the program 
// it toggles the led 10 times. 
  
for( int i = 0; i < 10; i++ ) 

  OCR0A = 0; 
  _delay_ms( 40 ); 
  OCR0A = 255; 
  _delay_ms( 40 ); 

 

 
 
 
 
void eeprom_save_array() 
{  
for( int i = 0; i < ARRAY_SIZE; i++ ) 

  eeprom_write_byte( &ee_flicker_array[ i ], flicker_array[ i ] ); 
   


 
 
 
 
void eeprom_read_array() 

for( int i = 0; i < ARRAY_SIZE; i++ ) 

  flicker_array[ i ] = eeprom_read_byte( &ee_flicker_array[ i ] ); 
   


 
 
 
 
uint8_t scale( uint8_t input, uint8_t inp_low, uint8_t inp_hi, uint8_t outp_low, uint8_t outp_hi) 

return ( ( ( input - inp_low ) * ( outp_hi - outp_low ) ) / ( ( inp_hi - inp_low ) + outp_low ) ); 

 
 
 
 
void scale_array() 

uint8_t arr_min = 255; 
uint8_t arr_max = 0; 
uint8_t out_low = 20; 
uint8_t out_high = 255; 
  
  
  
// find the min and max values 
  
for( int i = 0; i < ARRAY_SIZE; i++ ) 

  if( flicker_array[ i ] < arr_min ) 
   arr_min = flicker_array[ i ]; 
    
  if( flicker_array[ i ] > arr_max ) 
   arr_max = flicker_array[ i ]; 

  
  
  
// now that we know the range, scale it 
  
for( int i = 0; i < ARRAY_SIZE; i++ ) 

  flicker_array[ i ] = scale( flicker_array[ i ], arr_min, arr_max, out_low, out_high ); 

  
}   igh ); 

  
}   igh ); 

  
}   

  
}   

  
}   

  
}    } 
  
}    } 
  
}    } 
  
}                                 




EEPROM数据

:10000000777B7D7B78BA95535E3E3E4352353E7595 :100010004B657B5263586B5562777287858C5D7A2E :10002000535D5062556F6758784E55956B6D7D7373 :100030007D5B6B686A6A606B7777987A87605B6BC9 :10004000534A5368453B65679C6067537375638A81 :100050007F8388806358586B7A787B838A878A8508 :1000600083888A8A8A8A8A8C8A8A8A8A8A88837F0B :100070007D7B7A78777570707270704D416D6860B5 :1000800035353D3B4145525E41535D60656A5048A0 :100090004B4E3535313333363B40504E525D605315 :1000A000564B352D2E2E353838393B383158406077 :1000B0004D505A5D434053585A554E31312B2E33D3 :1000C0003136353638393938404A413B506240364E :1000D000292D455E5D523E333B433545383531333E :1000E00036363936383B4136363039332B29335A98 :1000F0006356413D5052556065553B302E303B4E66 :10010000362E2B3B393D4A503D45584E4B4E4A45C5 :10011000584B555D5B56585E60775E385A52464B79 :10012000504A4A354E412E363638524B463B3340C4 :100130004E605A504D434A504B48403D4046525BFA :100140006263635B52465B43554526353B5B434DDB :100150004056585A5D50464545413B437287908A08 :100160008F979D9573656B4D464555554156555531 :10017000565A5A5B5E56625565585A62686D6D6B89 :10018000686A6F656D316F55485055675A41555EC5 :100190006065686863606A60676A7F838C8788923D :1001A0008D8F888C8C85826A4E35231119433B4193 :1001B000674A4A3B2E3045414A5848705B6D72622F :1001C0007567565A5E554D77532D36415D55404003 :1001D0004040403E415E82928888909488857B634F :1001E000555356555053550334013A7EFF01603E36 :1001F0003E28018EFFFFFFFFFFFFFFFFFFFFFFFF16 :00000001FF FFFFFFFFFFFFFFFF16 :00000001FF :00000001FF :00000001FF :00000001FF :00000001FF 0001FF 0001FF 0001FF 0001FF 0001FF 0001FF 0001FF 001FF 001FF 001FF 001FF 001FF 001FF 001FF 001FF 01FF 01FF 01FF 01FF 01FF 01FF 01FF 01FF 01FF F F F F F F F F F F F F F F F F F F

 

© Copyright 吾爱微电子 | 琥珀川